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Abstract

We use numerical and asymptotic techniques to study the stability of a two-

phase air/water ow above a at porous plate. This ow is a model of the boundary

layer which forms on a yawed cylinder and can be used as a useful approximation

to the air ow over swept wings during heavy rainfall. We show that the interface

between the water and air layers can signi�cantly destabilize the ow, leading to

traveling wave disturbances which move along the attachment line. This instability

occurs for lower Reynolds numbers than is the case in the absence of a water layer.

We also investigate the instability of inviscid stationary modes. We calculate

the e�ective wavenumber and orientation of the stationary disturbance when the

uids have identical physical properties. Using perturbation methods we obtain

corrections due to a small strati�cation in viscosity, thus quantifying the interfacial

e�ects. Our analytical results are in agreement with the numerical solution which

we obtain for arbitrary uid properties.
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1 Introduction

The laminar ow over an in�nitely long cylinder can become unstable as the Reynolds

number increases. When the axis of the cylinder is inclined at an angle relative to

the free stream, the developed three-dimensional mean ow can be separated into two

components, one lying in a plane normal to the axis, the other parallel to the generators

of the cylinder. Small amplitude disturbances to the ow can take the form of Tollmien-

Schlichting waves, crossow vortices, or Taylor G�ortler vortices (if there are regions of

concave curvature).

The ow over a swept cylinder has been studied in detail, primarily because of its

important application and relevance to the boundary layer which forms on the surface of

swept-wing. Understanding the mechanisms of ow instability for this model, can lead

to signi�cant development of methods used in the reduction of laminar to turbulent ow

transition.
The model we use in this paper, is a classical Heimenz stagnation point ow, together

with a superposed non-zero component of velocity parallel to the axis. The equations
governing the ow are written in cartesian coordinates (see Prandtl [24]). The velocity
component parallel to the axis of the cylinder can be determined independently by

decoupling the momentum equations. The relevance of this solution to the realistic ow
which forms on a swept wing is discussed in section 3.2.

Using linear stability theory, Hall, Malik & Poll [12] calculated critical Reynolds
numbers for an in�nite swept attachment line boundary layer. They examined the e�ects
of both suction and blowing at the boundary. Surface suction can be used as an e�ective
laminar ow control since it thins the viscous boundary layer and leads to a reduction

in the local Reynolds number. In addition, the vorticity distribution is modi�ed so that
a more stable ow is established. Hall et al. obtained numerical and asymptotic results
which clearly illustrate that even a small amount of suction can signi�cantly stabilize
the ow. Their results are in excellent agreement with the experimental investigations
of Gaster [8], Pfenninger & Bacon [21] and Poll [22],[23]. These authors investigated the

stability of the attachment lines on swept wings and swept cylinders to small disturbances
of naturally occurring frequences.

In 1986, Hall & Malik [11] extended their linear stability results to include the non-

linear regime. The weakly nonlinear stability of this ow was examined using a Stuart-
Watson expansion procedure. The primary motivation was to explain why experimental

observations all correspond to modes near the lower branch of the neutral curve. Hall
& Malik showed that apart from a small region near the critical Reynolds number, �-

nite amplitude solutions bifurcate from the upper branch when the Reynolds number
is below the neutrally stable value elucidated from a linear stability analysis (subcrit-

ical). Equilibrium states associated with the upper branch are not therefore observed

experimentally, since these solutions are unstable.

In addition these authors used numerical methods to integrate the time-dependent
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Navier-stokes equations which govern the fully nonlinear problem. Using a Fourier-

Chebyshev spectral method Hall & Malik found the existence of supercritical �nite-

amplitude states near the lower branch of the neutral curve.

Recently there has been much interest in the aerodynamic penalties associated with

adverse weather conditions on aircraft ight. In a review of recent studies into the e�ects

of heavy rain during take-o� and landing, Dunham, Dunham & Bezos [6] showed that

short duration, heavy precipitation can result in a premature loss of lift of 15�20% and

an increase in drag coe�cient of up to 20%.

The exact mechanisms which cause these signi�cant ight characteristics are not

clearly understood. One possible explanation is that the presence of a thin water layer

on the wing surface leads to a loss in stability of the laminar air ow. The growth

of small disturbances in either the water or air layers could then promote transition.

In this paper, we consider the interfacial stability of an in�nite swept attachment line

boundary layer consisting of a water layer and air ow above. The interface which

separates these two viscous uids may be susceptible to instability of the form �rst
discovered by Yih [28]. Yih showed that long wavelength disturbances to plane Couette
and plane Poiseuille ow of two immiscible liquids of di�erent viscosities and densities
can lead to a mode of instability which is a due entirely to the discontinuity in the uid
properties. The growth rate of the interfacial deection approaches zero asymptotically

as the viscosities of the two uids become equal, hence this mode is not operational for
a single uid. The relative depths of the uid layers is a crucial factor in characterizing
the ow instability.

Since Yih's work, there have been numerous investigations of interfacial instability
which have important applications in many situations. For example, Blennerhassett [2]

showed that the interfacial instability of air ow over water can lead to the generation of
�nite amplitude waves. The e�ects of surface tension and gravity have been quanti�ed
in a variety of numerical and analytical studies which consider short, moderate and long
wavelength perturbations to the basic state (see Hooper & Boyd [15], [16], Hooper [14]
and Renardy [25]).

In this paper we quantify the e�ect of interfacial stability on the air ow over a
swept wing during heavy rainfall. Using the model described above we obtain an exact

solution of the Navier-Stokes equations which govern the viscous two-phase ow. The

domain consists of two separate regions. In the upper region of the boundary layer we
have a two-dimensional stagnation point air ow together with a superposed crossow
component (due to the angle of inclination to the free-stream). Below the air, is a layer

of water which can enter or leave the boundary layer through a porous plate below.

In Section 2 we calculate the exact solution for the basic state. In Section 3 we
investigate the linear temporal stability of the ow to disturbances when the Reynolds

number is �nite. Since the basic ow is an exact solution of the Navier-Stokes equations,
we are able to calculate the critical Reynolds numbers for a disturbance of arbitrary

wavelength. By varying the viscosity and density ratios of the two uids, we determine

the stabilizing/destabilizing e�ect of the interfacial mode. We �nd that for both wall
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blowing and suction, the interface signi�cantly destabilizes the ow. More precisely,

we show that the ow is susceptible to traveling wave disturbances at lower Reynolds

numbers than is the case for ow in the absence of a water layer.

The inviscid stability of a three-dimensional boundary layer was �rst comprehensively

studied by Gregory, Stuart & Walker [9]. These authors used both experimental and

theoretical techniques to develop an extensive understanding of the stability of the ow

which forms on a rotating disk, and their �ndings have important consequences for the

stability of general three-dimensional boundary layers.

The experimental work of Gregory et al. [9] was based on the china-clay evapora-

tion technique. They observed a regularly spaced pattern of equiangular spiral vortices

which remain stationary, relative to the rotating disk. The angle made between these

vortices and the radius vector of the disk was found to be in excellent agreement with

the inviscid theory developed by Stuart. The prediction for the number of vortices was

not, however, in such close agreement with the experimental observations. This dis-

crepancy was attributed to viscous e�ects, and was resolved later when Hall [10] used
a self-consistent asymptotic theory to study the problem. Hall extended the inviscid
analysis of Gregory et al. taking into account non-parallel ow e�ects. His results were
consistent with those obtained by the parallel ow numerical investigation of Malik [19],
although this approximation is not valid at �nite Reynolds numbers. In this work, Malik

obtained a neutral curve for these stationary disturbances, and he also found a second
stationary mode of instability which had been discovered experimentally by Federov,
Plavnik, Prokhorov & Zhukhovitskii [7].

In Section 4 we consider the inviscid stationary modes of instability of the ow de-
scribed in Section 2. Using numerical methods we calculate the eigenvalues and eigen-

functions when the uid properties are equated. We then compare these with our calcu-
lations for air ow over a water layer. In addition, we use asymptotic techniques for the
case when the uids have similar viscosities. This gives a useful method for quantifying
the onset of the interfacial instability. We �nd that stationary modes are susceptible to
interfacial e�ects due to a discontinuity in the shear stress at the unperturbed interface

position. In Section 5 we draw some conclusions.

2 Formulation of the Basic State

We consider the three-dimensional ow of two viscous, incompressible uids above an

in�nite, horizontal, porous at plate. The two uids are immiscible and occupy separate

regions. The upper uid velocity is denoted by U�

1 and the lower uid velocity by U�

2.

We use cartesian coordinates, with the (x�; z�) axes lying in a plane parallel to the
plate which is positioned at a vertical height y� = �d. The porous plate allows us to

model either the case of wall blowing, where there is a ux of uid into the lower region,

or wall suction where the normal velocity at the plate is in the �y� direction. The

streamlines in the (x�; y�) plane extend to in�nity, the volume of uid in each layer is
then assumed to be constant and the interface between the two uids is located at a
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height y� = ��� (z�; t�) where �� is an unknown function, and � is constant.

The upper and lower uids have viscosities �1; �2 and densities �1 and �2 respectively,

so that the kinematic viscosities are �1 (= �1=�1) and �2 (= �2=�2). We de�ne the uid

velocity and pressure to be

U�

j=1;2 =
h
x�U�

j (y
�; z�; t�) ; V �

j (y
�; z�; t�) ;W �

j (y
�; z�; t�)

i
; (1)

P �

j=1;2 = P �

j (y
�; z�; t�) ; (2)

and the Navier-Stokes equations are

@U�

j

@t�
+ U�

2

j + V �

j

@U�

j

@y�
+W �

j

@U�

j

@z�
+

1

x��j

@P �

j

@x�
= �jr

2U�

j ; (3a)

@V �

j

@t�
+ V �

j

@V �

j

@y�
+W �

j

@V �

j

@z�
+

@P �

j

�j@y�
= �jr

2V �

j ; (3b)

@W �

j

@t�
+ V �

j

@W �

j

@y�
+W �

j

@W �

j

@z�
+

@P �

j

�j@z�
= �jr

2W �

j ; (3c)

U�

j +
@V �

j

@y�
+
@W �

j

@z�
= 0: (3d)

The Laplacian is de�ned as

r2 (�) �
@2 (�)

@y�
2
+
@2 (�)

@z�
2
;

and the subscript denotes the upper and lower uids respectively. The form of the

velocity and pressure �elds (1) and (2) corresponds to an exact solution of the momentum
equations (3a-d), hence it is not necessary to make the boundary layer approximation
when deriving the basic ow, and in the subsequent analysis.

The tangential velocity of the lower uid satis�es the no-slip boundary condition
(x�U�

2
;W �

2
) (y� = �d) = (0; 0). The velocity perpendicular to the plate is prescribed by

V �

2
(y� = �d) = V0, where V0 > 0 corresponds to blowing, and V0 < 0 represents suction

at the wall.

The conditions far from the plate are given by

U�

1
!

U0

l
; W �

1
! W0; as y!1:

De�ne � = (�1l=U0�1)
1

2 , l is a length-scale in the streamwize direction and the velocity-
scale is W0, so that

(x�; y�; z�) = �(X;Y;Z) ;

(x�U�; V �;W �) = W0 (XU; V;W ) :
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Time t�, and pressure P �

j=1;2 are made dimensionless by �=W0 and �1W
2

0
respectively.

We also de�ne the following non-dimensional parameters

Re =
W0��1

�1
; � =

V0Re

W0

; D =
d

�
;

m =
�2

�1
; � =

�2

�1
; � =

�2

�1
:

Re is the Reynolds number, � is the dimensionless normal velocity at the wall, and D is

the depth of the lower uid, scaled with respect to the length �. The parameters m, �

and � are the viscosity, density and kinematic viscosity ratios respectively.

At the interface between the upper and lower uid layers, both velocity and tangential

stress are continuous. The normal stress exhibits a discontinuous jump due to the e�ect

of surface tension �. Using the notation

h
(�)j

i2
1
� (�)

2
� (�)

1
;

we obtain the following conditions which are applied at the non-dimensional interface
position Y = �~�

[Uj ]
2

1
= 0; [Vj ]

2

1
= 0; [Wj]

2

1
= 0;2

42�j� @~�
@Z

 
@Vj

@Y
�
@Wj

@Z

!
+ �j

0
@1 �

 
�
@~�

@Z

!2
1
A
 
@Wj

@Y
+
@Vj

@Z

!3
5
2

1

= 0;

"
�j
@Uj

@Y
� ��j

@~�

@Z

@Uj

@Z

#2
1

= 0;

2
4�1Pj

0
@1 +

 
�
@~�

@Z

!21A � 2�j

Re

@Vj

@Y
+
2�j�

Re

@~�

@Z

 
@Wj

@Y
+
@Vj

@Z

!
�

2�j

Re

@Wj

@Z

 
�
@~�

@Z

!2
3
5
2

1

� �1J�
@2~�

@Z2

0
@1 +

 
�
@~�

@Z

!2
1
A
�

1

2

= 0;

where J = �=�1W
2

0� is the non-dimensional surface tension coe�cient. In addition, we
must satisfy the kinematic condition

D

Dt
(Y � �~�) = 0 ) Vj=1;2 = �

 
@~�

@t
+Wj

@~�

@Z

!
; at Y = �~�: (4)

Let us now regard the ow in each region as a small perturbation of the basic state, so

that with �� 1,

(XU; V;W )j=1;2 =

 
XU

Re

;
V

Re

;W

!
j

(Y ) + �
�
X eU; eV ; fW�

j
(Y;Z; t) ; (5)
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and the pressure is written in the form

Pj=1;2 = �
1

2

�
U0X�

lW0

�2
+
P j

R2
e

+ � ePj:
Note that since � � 1, the unperturbed interface position is Y = 0. We substitute

this ow into the Navier-Stokes equations (3a-d), and take the limit � ! 0 to yield the

following system of equations which determine the basic state.

U1 + V
0

1 = 0; (6a)

V
000

1
+
�
V
0

1

�2
� V 1V

00

1
� 1 = 0; (6b)

W
00

1
� V 1W

0

1
= 0; (6c)

U2 + V
0

2 = 0; (7a)

�V
000

2 +
�
V
0

2

�2
� V 2V

00

2 � ��1 = 0; (7b)

�W
00

2
� V 2W

0

2
= 0: (7c)

The boundary and interface conditions become

U2 (�D) = W 2 (�D) = 0; V 2 (�D) = �; (8)

U1 (1) = 1; W 1 (1) = 1; (9)

U 2 (0) = U1 (0) ; W 2 (0) = W 1 (0) ; (10)

V 2 (0) = 0; V 1 (0) = 0; (11)

mU
0

2 (0) = U
0

1 (0) ; mW
0

2 (0) = W
0

1 (0) ; (12)

where (�)0 denotes di�erentiation with respect to the normal coordinate Y .
Before �nding a solution to the above equations, we �rstly analyze the behavior of

the basic ow as Y ! 1. For large Y , the asymptotic form for V 1 and W 1 can be
expressed as

V 1 = �� + �0�; �� 1; (13a)

W 1 = 1� �0

"
1

�
+ �

#
exp

 
�
�2

2

!
; (13b)

� = �
1

�3
+

3

�5
�
15

�7
+ � � �+

(�1)n (2n � 1) (2n � 3) � � � 3:1

�2n+1
+ � � � ; (13c)

where � = Y + � , � = � (�) and �; �0 are constants (see Rosenhead, Chapters V and
VIII [26]). After substitution into equations (6a-7c) we integrate with respect to Y to
obtain the following asymptotic form for � as Y !1

� =
1

3
[�00 + ��0] ;

6



�0 =
1

2

"
1

�
+ � + �2�

#
exp

 
�
�2

2

!
;

�00 = ��exp

 
�
�2

2

!
:

Having derived expressions (13a-c) above, we obtain numerical values for the basic ow

using a fourth order Runge-Kutta scheme to integrate equations (6a-7c) with respect to

Y , from Y1 to �D, where Y1 is an arbitrarily large number. Initial values for � and �0
were chosen, and then improved in order to satisfy the no-slip conditions (8) at the wall,

and the kinematic condition (11) to within a speci�ed tolerance. For the case of a single

uid, (m = 1 = �) a step length of 1:0� 10�5 gave excellent agreement with the results

published in Rosenhead [26] (chapter V on page 232). To model the ow of air over

water we obtain a solution of the system governing the basic state using the viscosity

and density ratios shown in Table 1 (see Batchelor [1]). The basic ow pro�les U , V and
W are illustrated in Figures 1(a) and 1(b) for blowing and suction respectively. Each
�gure shows the velocity components with depth of water D = 0:5; 1; 2; 3 and 4.

Given a constant depth of waterD, we calculate the corresponding blowing or suction
� at the porous plate, the results are illustrated in Figure 2(a). For the case � > 0 (wall

blowing), we see that the velocity at the plate increases almost linearly with depth of
lower uid D. With suction at the wall, the relationship is more involved.

Before we examine the ow stability for both cases, we �rstly discuss the basic ow
properties. The way in which a constant depth of lower uid is maintained may not be
immediately obvious, especially in the case of wall suction. This is made clear by an

analysis of the streamlines. By integrating XU1 and XU 2 with respect to the normal
coordinate Y we obtain Figures 2(b) and 2(c) which show the streamlines at a particular
location along the spanwize direction. We have chosen representative examples: � =
0:04, D = 2:0; and � = �0:12, D = 1:0. With a positive normal velocity at the plate,
uid enters the lower layer and moves towards a stagnation point at X = 0 = Y . The

ow in the upper layer is directed towards the plate, in the �Y direction. This is a
classical Heimenz stagnation point boundary layer solution together with an imposed
crossow W acting in the spanwize direction.

For the case of suction, two stagnation points occur. There is a region above the

interface (positioned at Y = 0), where V 1 > 0 and U1 < 0 as shown by the velocity
pro�les in Figures 1(a) and 1(b). The depth of this region increases with the suction,

so that with a depth D = 1:61 and � = �0:1022 (suction is a minimum here) the
two stagnation points almost coincide. For 0 > Y > �D the ow is towards the

porous plate where the tangential velocity satis�es the no-slip condition. At Y = 0

the kinematic condition (11) is imposed to prevent the transfer of uid particles across
the unperturbed interface (since the uids are immiscible). The tangential velocity is

continuous here although the gradient is discontinuous due to the viscosity ratio m 6= 1
(namely equation (12)).

The relationship between � and D shown in Figure 2(a) can be analyzed as follows.
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For �� 1 and Y � O (1) equations (6a- 7c) yield solutions

U2 =
Y +D

��
+ � � � ;

V 2 = ��
(Y +D)

2

2��
+ � � � ;

W 2 = 1 � exp

"
� (Y +D) �

m

#
� � � :

Imposing the kinematic condition V 2 (Y = 0) = 0 yields

D = (2�)
1

2 � ' 40:4�;

which is in excellent agreement with the numerical values presented in Figure 2(a).

For wall suction, the limit � ! �1 corresponds to the singularity in the depth D.
As �! �1, we see that D � 1, and momentum conservation in the spanwize direction
suggests the use of the scaled variable

� =
(Y +D) j�j�

m
;

so that for � � O (1)

V 2 � ��
m2�2

2�3�3
+ � � � :

We now investigate the stability of the basic ow calculated above. We consider two
distinct cases of physical interest: in Section 3 we look at the temporal stability of the
ow when the Reynolds number is �nite; in Section 4 we investigate inviscid stationary
modes at high Reynolds numbers.

3 Viscous Modes

The aim of this work is to quantify the e�ect of the interfacial viscosity and density
strati�cation upon the stability of the basic ow when viscous e�ects are included. For a
single uid, linear and nonlinear stability analyses have shown that unstable disturbances

propagate along the attachment line. The three-dimensional basic ow is independent of

the spanwize coordinate Z (and is therefore an entirely parallel ow). Hence we employ
periodic boundary conditions (in that direction) on the ow disturbances. Such methods

cannot of course be used for ows which are spatially growing (non-parallel) such as the
Blasius boundary layer which forms on a at plate.

The ow described in the previous section is a �rst approximation to the boundary

layer which forms on a swept wing, and is used to gain an understanding of the instability
mechanisms which lead to transition from laminar to turbulent ow. To this end, we
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consider a convective instability in which disturbances propagate away from their source.

For a discussion of absolute and convective instabilities the reader is referred to the

review paper by Heurre & Monkewitz [13]. Following the work by Hall, Malik & Poll

[12], we consider the temporal development of small amplitude perturbations having a

normal mode expansion

�e�; ePj=1;2� = (�; Pj=1;2) exp (ik [Z � ct]) ; (14a)� eU; eV ; fW�
j=1;2

= (U; V;W )j exp (ik [Z � ct]) : (14b)

These perturbations are spatially periodic with wavelength 2�=k and with speed c.

The system of equations which govern the linearized stability problem are given

by substituting equations (5 and 14a-b) into the Navier-Stokes equations (3a-d) and

associated boundary/interface conditions and then discarding terms which are o (�). We

obtain

L2

1 (U1) = 2U 1U1 + U
0

1V1 + V 1U
0

1; (15a)

L2

1
(V1) = ReP

0

1
+ V

0

1
V1 + V 1V

0

1
; (15b)

L2

1 (W1) = ikReP1 + V 1W
0

1 +ReW
0

1V1; (15c)

U1 + V 0

1 + ikW1 = 0; (15d)

L2

2 (U2) = 2U 2U2 + U
0

2V2 + V 2U
0

2; (15e)

L2

2
(V2) =

ReP
0

2

�
+ V

0

2
V2 + V 2V

0

2
; (15f)

L2

2
(W2) =

ikReP2

�
+ V 2W

0

2
+ReW

0

2
V2; (15g)

U2 + V 0

2 + ikW2 = 0; (15h)

where

L2

1 (�) � (�)
00

� k2 (�)� ikRe

�
W 1 � c

�
(�) ;

L2

2 (�) � � (�)00 � �k2 (�)� ikRe

�
W 2 � c

�
(�) :

The velocity perturbation to the lower uid satis�es the no-slip condition at the
plate, and the conditions at the interface are obtained by expanding the velocity and
stress components as Taylor expansions about the unperturbed interface position Y = 0.

U2 + �
U
0

2

Re

= U1 + �
U
0

1

Re

;

V2 + �
V
0

2

Re

= V1 + �
V
0

1

Re

;

W2 + �W
0

2 = W1 + �W
0

1;
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m

 
2ik�V

0

2

Re

+W
00

2
� + ikV2 +W 0

2

!
=

2ik�V
0

1

Re

+W
00

1
� + ikV1 +W 0

1
;

m

 
�U

00

2

Re

+ U 0

2

!
=

�U
00

1

Re

+ U 0

1
;

P2 +
�P

0

2

R2
e

�m

 
2�V

00

2

R2
e

+
2V 0

2

Re

!
= P1 +

�P
0

1

R2
e

�
2�V

00

1

R2
e

�
2V 0

1

Re

� k2�J:

The kinematic condition (4) becomes

� =
ReV1

ikRe

�
W 1 � c

�
� V

0

1

: (16)

The upper uid velocity U1 must match the undisturbed ow as we move far away
from the plate, we therefore require the perturbed ow to decay exponentially as Y

becomes large. Hall et al. [12] showed that by replacing the basic ow by its asymptotic
dependence for Y � 1 (equation (13a-c)), the perturbed velocity in the upper uid has
the form

U1 � W1 � exp (�Y 2=2) ;
V1 � exp (�kY ) ;

)
as Y !1:

Equations (15a-h) govern the stability of the lower uid and are de�ned on the domain
�D � Y � ��, whilst those for the upper uid are de�ned for �� � Y � 1. These
equations in general require a numerical solution.

For a given Reynolds number Re, and real wavenumber k, we obtain the correspond-

ing complex eigenvalue c. The imaginary part, denoted ci, determines kci, the linear
temporal growth or decay of the perturbation to the basic state. When ci > 0 the ow
is said to be linearly unstable and for ci < 0 it is linearly stable.

3.1 Numerical Solution

Solving the stability problem by means of a standard shooting method becomes pro-

hibitively expensive as the Reynolds number increases. The rapidly varying nature of
the eigenfunctions results in a loss of independence of orthogonal solutions due to the
introduction of a `parasitic' error at each integration step. High accuracy can only be

guaranteed if the step-length is made vanishingly small. These di�culties were overcome

by implementing a compact fourth order �nite di�erence scheme of the form developed
by Malik, Chuang & Hussaini [20]. This method was later used by Hall et al. [12]

to investigate the attachment line stability of a single uid, a detailed account of the
implementation of this scheme is given by these authors. The method is applicable to a

set of linear �rst order ordinary di�erential equations with an equal number of boundary
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conditions prescribed at each end of the domain. Our solution strategy is as follows,

the equations describing the stability problem above have been formulated as two sixth

order ordinary di�erential systems with coupled interface conditions. We de�ne two

column vectors

 j=1;2 = (�1j; �2j; �3j; �4j; �5j; �6j)
T
=
�
Uj; Vj ;Wj; Pj ; U

0

j;W
0

j

�T
;

where, as before, the subscript j = 1; 2 denotes the upper and lower uids respectively,

and T denotes the transpose of the vector. The equations can now be formulated as

twelve �rst order linear di�erential equations such that

d�lj

dY
=

6X
n=1

(aln)j �nj; l = 1; 2; : : : 6; j = 1; 2;

d2�lj

dY 2
=

6X
n=1

(bln)j �nj ; l = 1; 2; : : : 6; j = 1; 2;

bln =
daln

dY
+

6X
p=1

alpapn:

De�ning f2 = k2m��1 + ik(W 2 � c)Re, we �nd that the 6 � 6 matrix (aln)2 has the
following non-zero elements

(a15)2 = 1; (a21)2 = �1; (a23)2 = �ik;

(a36)2 = 1; (a41)2 = �V 2R
�1

e ; (a42)2 = ��R
�1

e

�
f2 + V

0

2

�
;

(a43)2 = ik�V 2R
�1

e ; (a45)2 = �mR
�1

e ; (a46)2 = �ikmR
�1

e ;

(a51)2 = �m�1

�
f2 + 2U 2

�
; (a52)2 = �m�1U

0

2; (a55)2 = �m�1V 2;

(a62)2 = �m�1ReW
0

2
; (a63)2 = �m�1f2; (a64)2 = ikm�1Re;

(a66)2 = �m�1V 2:

The corresponding matrix (aln)1 is obtained from the above by setting m and � to unity.

The numerical method is then derived using the Euler-Maclaurin formulae

 n
j = (�n1 ; �

n
2 ; : : : �

n
6)

T
j =  j (Yn) ; (17)

hn = Yn � Yn�1; (18)

 n
j �  n�1

j =
hn

2

 
d n

j

dY
+
d n�1

j

dY

!
�
h2n
12

 
d2 n

j

dY 2
+
d2 n�1

j

dY 2

!

+ O
�
h5n

�
: (19)

The nodes are distributed so that in the upper uid

g1 =
Y1 + L1

Y1
;

Yn =
L1 (n � 1)

Ng1 � (n� 1)
; n = 1; 2; : : : ; N + 1;
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where N + 1 is the total number of nodes, Y1 is the edge of the boundary layer, and

the scaling parameter chosen such that W 1 (L1=2) = 0:5. Malik et al. [20] showed that

such a choice of L1 yielded maximum accuracy. Similarly in the lower uid layer

g2 =
D + L2

D
;

Yn =
L2 (n � 1)

Mg2 � (n� 1)
; n = 1; 2; : : : ;M + 1;

such that W 2 (L2=2) = �=2.

For both the upper and lower uids, equation (19) becomes

�nl � �n�1l �
hn

2

6X
p=1

anlp�
n
p +

h2n
12

6X
p=1

bnlp�
n
p �

hn

2

6X
p=1

an�1lp �n�1p

�
h2n
12

6X
p=1

bn�1lp �n�1p = 0; n = 2; : : : ; N + 1; l = 1; 2; : : : 6;

which may be written in block-tridiagonal form so that the solution across each uid
layer is obtained e�ciently. To this end, we introduce independent inhomogeneous ve-
locity components at the interface, and equation (16) gives the corresponding interfacial
deformation �. We �nd a suitable linear combination of these three independent solu-
tions, so that for a speci�ed lower uid depth D, Reynolds number Re, and wavenumber

k, the conditions of stress continuity at Y = 0 are satis�ed, and the complex eigenvalue
c is obtained. When we equate the densities and viscosities of the two uids, the numer-
ical scheme yields exactly the eigenvalues found by Hall et al. [12]. When the imaginary
part of the eigenvalue c is zero, there is no temporal growth or decay of the disturbance
to the basic state, and the ow is neutrally stable. We then iterate to obtain neutral dis-

turbances characterized by ci = 0. Figure 3 shows four neutral curves: an impermeable
plate with � = 0; wall blowing with � = 0:137 and � = 0:4; and with suction � = �0:1.
Inside the curves, c has a positive imaginary part and the perturbations (Uj ; Vj;Wj; �)
grow exponentially in time.

The eigenvectors given in Figures 4(a)-4(c) have been normalized so that the maxi-

mum magnitude of each velocity component is unity. Figure 4(a) shows both real and
imaginary parts of the three velocity components when the uid viscosities and densities

are equal. It has been veri�ed that these (and other) eigenvectors are the same as those
published by Hall et al. [12]. In Figures 4(b,c) we clearly see the discontinuities in the

velocity and shear stress at the unperturbed interface position Y = 0 which is due to the
di�erence in viscosities and densities of the air and water layers. It is this discontinuity

which plays an important role in altering the stability of the ow. The neutral curves
for air ow over water are drawn in the (k;Re) plane. Figures 5(a) and 5(b) correspond

to cases of wall blowing and suction respectively. These results are discussed in the

following section.
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3.2 Discussion

Before we discuss the novel results of our numerical calculations we �rstly comment on

the relevance of the exact solution, to the actual ow which forms on swept wings and

swept cylinders. The boundary layer ow over a yawed, in�nitely long cylinder was

investigated and by Sears [27], (and in the unpublished work of Schubart). Their work

is discussed in Chapter VIII of Rosenhead [26]. Using cartesian coordinates, the velocity

components are expanded in powers of x=l, where x is the distance measured along the

surface perpendicular to the cylinder generators and l is an appropriate length-scale.

Close to the leading edge of the cylinder, and for a su�ciently large radius of curvature,

the e�ects of curvature can be assumed negligible. The leading order solution (higher

powers of x=l are ignored) reduces identically to the ow which we have calculated in

Section 2. The accuracy of this approximation depends, therefore, on the geometry of

the cylinder or swept wing. Results using this model will be most relevant to wing

sections which have a at nose.
Since the basic ow is only a �rst approximation to the ow near the attachment

line, asymptotic methods based on a high Reynolds number assumption must be used
to investigate the practical problem.

It is worth making a few comments about the dimensional quantities in this problem.

The velocity components in each uid are made dimensionless using the spanwize free
stream speedW0. The length scale � = (�1l=U0�1)

1=2 is based on the streamwize velocity
U0 and length l. In a practical situation then, the density and viscosity of the water and
air would be �xed parameters (given in Table 1), as would the normal velocity at the
surface, V0. We have shown in the previous section, that with a given value of � (the

dimensionless parameter quantifying the amount of blowing or suction) we can calculate
the corresponding nondimensional depth of water D. The actual height of the interface
is therefore not a free parameter and is determined by the dimensional speeds U0; V0;W0

so that � is known and hence the depth d = D=� can be deduced.
The results of our linear stability analysis are in excellent agreement with those of

Hall et al. [12] when the uid properties are matched across the interface (see Figures

3 and 4). For a given wavenumber k, we calculate the Reynolds number which gives
neutral stability. In the absence of suction or blowing, our numerical scheme yields the

critical values (Re)c = 583:14, kc = 0:2881 in agreement with [12]. For Re < (Re)c
disturbances are damped and decay to zero exponentially in time. At points inside the
neutral curve, the boundary layer is susceptible to traveling wave instabilities which

propagate along the attachment line.
An additional check on the numerical results is given by halving the step-size used

in the �nite di�erence calculations. Table 2 illustrates the accuracy of the scheme as the

number of mesh points is doubled.
For a single uid (corresponding to the case when the uid properties are matched),

suction and blowing have opposite e�ects on the ow stability. As �(> 0) is increased,
the critical Reynolds number decreases, and the ow is linearly destabilized by a smaller

crossow velocity. See for example, the neutral curves in Figure 3 with � = 0:137 and
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� = 0:4, and the results given by Hall et al. [12]. Suction however, can be a useful

laminar ow control. The stabilization induced by negative normal velocity at the

surface increases the critical Reynolds number, as illustrated by the representative case

� = �0:1 in Figure 3. We have also calculated neutral stability results for other values

of � (namely � = �0:15;�0:2;�0:25). In each of these cases the ow is stable over the

range 0 < Re < 1500 illustrated in Figure 3. The asymptotic results of Hall et al. show

that as �!�1, (Re)c can be made arbitrarily large. This however, does not take into

account the e�ects of nonlinearity. Hall & Malik [11] showed that solutions bifurcate

subcritically from the upper branch of the neutral curve. The linearly stabilizing role of

suction may therefore be destroyed by nonlinearity and transition may be enhanced by

the unstable nonlinear modes.

Upon introducing a viscosity and density di�erence across the interface, the results

of the linear stability analysis are signi�cantly altered. For the ow of air over water

(the uid properties are given in Table 1), we have obtained results in the case of both

blowing and suction at the wall. With a positive normal velocity at the porous plate,
we have chosen the representative cases: � = 0:027, � = 0:04, and � = 0:137. These
neutral curves are illustrated in Figure 5(a). To emphasize the interfacial e�ect, we
have also included the curve (broken line) corresponding to the neutral stability of a
single uid (see Figure 3). These eigenvalues were calculated by following the results

given by uids with matched physical properties, and gradually introducing viscosity
and density strati�cation across the interface. As m and � increase, the interfacial mode
destabilizes the ow. For any given Reynolds number, the band of unstable wavelengths
is signi�cantly increased. The upper and lower branches of the neutral curve open out
and the critical Reynolds number decreases. For example, with � = 0:137 and D = 6:0,

we obtain critical values kc = 0:499 and (Re)c = 97:81, whereas for matched uids the
critical values corresponding to � = 0:137 are kc = 0:309 and (Re)c = 315:12.

With suction at the wall, the viscosity and density strati�cation across the inter-
face also leads to destabilization and the ow is again unstable for a wider band of
wavenumbers. In Figure 5(b) we show neutral curves for the cases � = �0:1026 and

� = �0:208 which correspond to water depths D = 1:0 and D = 0:5 respectively
(see Figure 2(a)). With a nondimensional water depth of 1:0, the ow is unstable

even for small Reynolds numbers. Accurate numerical experiments yield critical val-

ues (Re)e = 10:9887, kc = 0:7946. When the depth of the water layer is reduced (and
consequently the suction parameter is increased) the critical Reynolds number increases
along with the corresponding wavenumber. For example, with D = 0:5, we obtain

(Re)e = 82:0096, kc = 1:4410. It is clear then, that the usual stabilizing e�ect of suction

at the plate, has been negated by the strongly destabilizing inuence of the viscosity
and density discontinuities at the interface.

A comparison between the theoretical and experimental results is di�cult. As dis-
cussed earlier, in-ight calculations and wind tunnel experiments indicate that a water

layer on the wing surface can have a detrimental e�ect on drag and lift. This is most

likely due to the premature transition from laminar to turbulent ow. The interfacial
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traveling wave instability observed here is a possible contributing factor in this process.

However, experimental investigations into the instability of superposed uids have had

limited success in quantifying the interfacial mode. Charles & Lilleleht [3] and Kao &

Park [18] studied the plane Poiseuille ow of oil and water in a channel. They found

instability at large Reynolds numbers which appears to arise in the water layer and

causes the interface to become wavy. It is not clear that this instability is caused by

the interfacial e�ects, it is more likely that the presence of unstable Tollmien-Schlichting

waves in the less viscous uid (water) are being observed at the interface. This mode

is present at high Reynolds numbers in the absence of a second uid and is perhaps

the one observed experimentally because it has the largest growth rate. More successful

experimental results have been obtained for two uid ows in cylindrical geometries,

where traveling waves are often observed at the interface. The books by Joseph and

Renardy [17] give a good review of recent experimental and theoretical investigations.

The ow described here is a crude model of the actual ow of air over water on

swept wings. To make qualitative comparisons between the theoretical calculations and
observable phenomenon would require a more sophisticated model in which nonlinear
e�ects are taken into account. The methods adopted by Hall & Malik [11] could be
applied to the two uid problem in an analogous manner, although the nonlinear in-
terfacial conditions would complicate the analysis. In addition, global methods could

be used to calculate the complete set of eigenvalues, relating the interfacial e�ects with
other modes of instability.

4 Inviscid Stationary Modes

We now investigate the stationary instability of two-phase ow of air above water over
a swept wing, when the Reynolds number is large. As before, we regard the ow in each
region as a small perturbation to the basic state. The normal coordinate must now be
scaled on the Reynolds number, so that the uid velocity and pressure are

(XU; V;W )j=1;2 =

�
XU j; R

1

2

e V j;W j

��
Y R

1

2

e

�
+ �

�
X eUj ;

eVj ; fWj

�
(X;Y;Z) ; (20)

Pj=1;2 = �
1

2

�
U0X�Re

W0

�2
+
P j

Re

+ � ePj: (21)

After substituting (20) and (21) into the non-dimensional Navier-Stokes equations and
taking � ! 0, we recover the ordinary di�erential system (6a-7c) and boundary condi-

tions (8-12) which determine the basic state. At next order the equations governing the

linearized stability of the lower uid layer are

U2

@
�
X2 eU2

�
@X

+XV 2

@ eU2

@Y
+XR

1

2

e
eV2@U2

@Y
+XW 2

@ eU2

@Z
+
1

�

@ eP2
@X

=
�

Re

r2
�
X eU2

�
; (22a)

XU2

@ eV2
@X

+ V 2

@ eV2
@Y

+ eV2 @V 2

@Y
+W 2

@ eV2
@Z

+
R

1

2

e

�

@ eP2
@Y

=
�

Re

r2 eV2; (22b)
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XU 2

@fW2

@X
+ V 2

@fW2

@Y
+R

1

2

e
eV2@W 2

@Y
+W 2

@fW2

@Z
+
1

�

@ eP2
@Z

=
�

Re

r2fW2; (22c)

eU2 +
@ eU2

@X
+R

1

2

e
@ eV2
@Y

+
@fW2

@Z
= 0; (22d)

where

r2 (�) =
@2 (�)

@X2
+Re

@ (�)

@Y 2
+
@2 (�)

@Z2
:

The corresponding equations for the upper layer are obtained by replacing � and � by

unity in the above equations.

Following the inviscid instability theory of Gregory et al. [9] we expect the pertur-

bations to the velocity, pressure and interface to have the following modal expansions,

with wavelengths scaled on the boundary layer thickness.

�
X eUj ; eVj; fWj

�
= (XUj ; Vj;Wj) (Y ) exp

 
iR

1

2
e

"Z X

�dX + �Z

#!
; (23a)

�e�; ePj� = (�; Pj) (Y ) exp

 
iR

1

2

e

"Z X

�dX + �Z

#!
: (23b)

In particular we consider a ow which is neutrally stable so that the wavenumbers �
and � are real. As Re !1, an inviscid zone will develop with depth O

�
R�1=2
e

�
. This

inviscid region is asymptotically matched onto a viscous wall layer so that the no-slip
conditions can be satis�ed at Y = �D. By balancing inertial and viscous terms in
equations (22a-d), we see that this viscous layer has thickness O

�
R�2=3
e

�
. The inviscid

perturbations Uj , Vj , Wj and Pj and wavenumbers � and � are then expanded in powers

of O
�
R�1=6
e

�

Uj = Uj0 +R
�

1

6

e Uj1 + � � � ;

Vj = Vj0 +R
�

1

6

e Vj1 + � � � ;

Wj = Wj0 +R
�

1

6

e Wj1 + � � � ;

Pj = Pj0 +R
�

1

6

e Pj1 + � � � ;

� = �0 +R
�

1

6

e �1 + � � � ;

� = �0 +R
�

1

6

e �1 + � � � :

Substitution of the neutral disturbances (23a-b) into equations (22a-d) yields the follow-
ing leading order system of equations which govern the inviscid stability of perturbations

to the upper and lower uids when the Reynolds number is asymptotically large.

iXU jUj0 +XVj0U
0

j = �
i�0Pj0

�
; (24a)
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iU jVj0 = �
P 0

j0

�
; (24b)

iU jWj0 + Vj0W
0

j = �
i�0Pj0

�
; (24c)

i�0XUj0 + V 0

j0 + i�0Wj0 = 0; (24d)

�0XU j0 + �0W j0 = U j0: (24e)

Eliminating Uj0;Wj0 and Pj0 from equations (24a-e) we see that Vj0 satis�es Rayleigh's

equation, (25a-f) in each layer.

U1

�
V 00

10
� 2

0
V10

�
= U

00

1
V10; Y 2 [0;1); (25a)

U2

�
V 00

20 � 
2

0V20
�

= U
00

2V20; Y 2 [�D; 0]; (25b)

V10 (1) = 0; (25c)

V20 (�D) = 0; (25d)

V20 (0) = V10 (0) ; (25e)

V 0

20 (0) = V 0

10 (0) +
(1 �m)V10 (0)U

0

10 (0)

mU10 (0)
: (25f)

Here U j is the `equivalent' two-dimensional velocity pro�le, and 20 = �20 + �20 is the
`e�ective' wavenumber. Note that the continuity of stresses at the interface are satis-
�ed trivially in the limit as Re ! 1. The inviscid solution V20 is matched onto the
viscous perturbation in the wall layer, and in view of the continuity equation (22d) this

perturbation is O
�
R�1=2
e

�
, hence V20 satis�es the boundary condition (25d).

The point at which U j = 0 is denoted by Y = Y0, and as Y approaches this value, U0

and W0 behave like 1= (Y � Y0). By careful choice of �0=�0, U
00

j is also made to vanish

as Y ! Y0, so that V0 has no such singularity, and a classical critical layer analysis is
not necessary (see Hall [10]).

4.1 Asymptotic Solution for Similar Fluids

The above system may be solved numerically, to do this a suitable initial guess must be

made for the eigenvalue 0. To assist the location of this eigenvalue, we �rstly consider
the analogous problem where the two uids have equal densities, and the viscosity ratio

is close to unity, that is m = 1 + �, where � � 1. This case corresponds to the ow of

two uids with similar properties, this is a useful indication of the manner in which the
interfacial e�ects can alter the stability of the ow.

The basic ow and wavenumbers are then expanded in an asymptotic series as

�0 = �00 + ��01 + � � � ;

�0 = �00 + ��01 + � � � ;
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0 = 00 + �01 + � � � ;

01 =
�00�01 + �00�01

00
;

U j = U j0 + �U j1 + � � � ;

V j = V j0 + �V j1 + � � � ;

W j = W j0 + �W j1 + � � � ;

U j = U j0 + �U j1 + � � � ;

U j0 = �00XU j0 + �00W j0;

U j1 = �00XU j1 + �00W j1 + �01XU j0 + �01W j0:

The leading order basic ow in each layer j = 1; 2 satis�es

V
000

j0 = V j0V
00

j0 �
�
V
0

j0

�2
+ 1;

W
00

j0 = V j0W
0

j0:

V
0

10 (1) = �1;

W 10 (1) = 1;

V 20 (�D) = �;

V
0

20 (�D) = 0;

W 20 (�D) = 0;

with V j ; V
0

j; V
00

j ;W j, and W
0

j, continuous at Y = 0.
At O (�),

V
000

11 = V 10V
00

11 � 2V
0

10V
0

11 + V 11V
00

10;

V
000

21
= V 20V

00

21
� 2V

0

20
V
0

21
+ V 21V

00

20
� V

00

10
;

W
00

11 = V 10W
0

11 + V 11W
0

10;

W
00

21 = V 20W
0

21 + V 11W
0

10 �W
00

20;

V
0

11
(1) = 0;

W 11 (1) = 0;

V
0

21 (�D) = 0;

W 21 (�D) = 0;

V 11 (0) = 0 = V 21 (0) ;

V
0

11 (0) = V
0

21 (0) ;

V
00

11
(0) = V

00

21
(0) + V

00

20
(0) ;

W 11 (0) = W 21 (0) ;

W
0

11
(0) = W

0

21
(0) +W

0

20
(0) ;

To solve the above equations numerically, we require the asymptotic form of the O (�)

correction to the basic ow as Y ! 1. This is obtained in a manner similar to the
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derivation of equations (13a-c). We �nd that

V 11 = �1 + �1�� �1�0�
0;

W 11 = �

 
�1

 
1

�
+ �

!
+ �1�0

!
exp

 
�
�2

2

!
:

Where �1, �1 and �1 are constants to be found. The equations governing the basic state

were then solved numerically and the results compared with the solution of equations

(6a-7c), choosing a value of m close to unity. The results we obtained gave excellent

agreement up to O (�2).

The solution of (25a-f) may be obtained by solving the adjoint set of equations (see

Coddington and Levinson [4]). We recollect that ifM is an ordinary di�erential operator

over a region N , the adjoint problem is de�ned byZ
N
	M (�) dy =

Z
N
�M+ (	) dy = 0:

In our case the region N = [�D;1), contains two sub-regions [�D; 0] and [0;1). This
however, does not present a di�culty, following the work of Blennerhassett [2] we de�ne
a vector

Z =

8>>>><
>>>>:

Z1 0 � Y <1;

Z2 �D � Y � 0;

and a 2� 2 real matrix S such that

S =

8>>>><
>>>>:

S1 0 � Y <1;

S2 �D � Y � 0:

For upper and lower uids (j = 1; 2 respectively), Zj and Sj are then chosen such that

Zj =

0
BBBBBBBB@

Vj0

V 0

j0 �
Vj0U

0

j

U j

1
CCCCCCCCA
; Sj =

0
BBBBBBBBBBB@

U
0

j

U j

1

200 �
U
0

j

U j

1
CCCCCCCCCCCA
;

Equations (25a-b) may then be written in vector form Z0 = SZ, where Vj0 satis�es no-

slip at the boundaries and Z is continuous across the interface. The adjoint problem is
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now de�ned by

Z
1

�D

�
Z+
�T

[Z0 � SZ] dY =

��
Z+
�T
Z

�
1

�D

�
Z
1

�D
ZT

��
Z+
�
0

+ STZ+

�
dY = 0:

Writing S+ = �ST the adjoint system becomes

�
Z+
�
0

= S+Z+;

where the adjoint function Z+ is also continuous across the interface. and V +

j0 satis�es

no-slip at the boundaries. The problem is self-adjoint.

We now perturb the viscosity ratio about m = 1, and write

Vj0 = Vj00 + �Vj01 + � � � ;

Sj = Sj0 + �Sj1 + � � � ;

Zj = Zj0 + �Zj1 + � � � :

Substitiution into the Rayleigh equations in each uid layer yields

Zj0 =

0
BBBBBBBB@

Vj00

V 0

j00�
Vj00U

0

j0

U j0

1
CCCCCCCCA
;

Zj1 =

0
BBBBBBBBB@

Vj01

V 0

j01�
Vj01U

0

j0

U j0

+
Vj00

�
U
0

j0U j1 � U j0U
0

j1

�

U
2

j0

1
CCCCCCCCCA
;

Sj0 =

0
BBBBBBBBBBB@

U
0

j0

U j0

1

200 �
U
0

j0

U j0

1
CCCCCCCCCCCA
;
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Sj1 =

0
BBBBBBBBBBBBB@

U
0

j1U j0 � U
0

j0U j1

U
2

j0

0

20010 �

2
64U

0

j0U j1 � U
0

j1U j0

U
2

j0

3
75

1
CCCCCCCCCCCCCA
;

Neglecting terms of O (�2), it follows that the momentum equations are

O (1) : Z00 � S0Z0 = 0; (26)

O (�) : Z01 � S0Z1 = S1Z0: (27)

Vectors Z0 and Z1 remain continuous across the interface and Vj00 and Vj01 satisfy the
no-slip conditions at Y = �D and as Y !1. For equation (27) to have a solution, the
forcing term on the right hand side, must be orthogonal to the adjoint function, hence

Z
0

�D

�
Z+

20

�
S21Z20dY +

Z
1

0

�
Z+

10

�
S11Z10dY = 0:

After some manipulation we obtain

20001I0 = �
V 2

100 (0)U
0

10 (0)

U 10 (0)
� I1 � I2; (28a)

I0 =
Z

0

�D
V 2

200
dY +

Z
1

0

V 2

100
dY; (28b)

I1 =
Z
1

0

V 2

100

�
U
00

11
U10 � U11U

00

10

�

U
2

10

dY; (28c)

I2 =
Z

0

�D

V 2

200

�
U
00

21
U20 � U 21U

00

20

�

U
2

20

dY: (28d)

The integrands of I1 and I2 are regular since the singularity at Y = Y0 is removable,
for details see Coward [5]. We are now able to calculate 01, the O (�) correction to the

e�ective wavenumber, by �nding a numerical solution to the leading order momentum
equations (26) and the solvability condition (28a).

4.2 Discussion

The Rayleigh equations (25a-b) and associated boundary and interface conditions (25c-

f) describe the inviscid stationary modes of the two phase ow with general viscosity
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ratio m and density ratio �. These equations were integrated using standard a �nite

di�erence method so that for given m and � the eigenvalue 0 was calculated to a high

degree of accuracy.

Figure 6 illustrates the dependence of 20 upon the lower to upper uid viscosity ratio

for 0:8 � m � 24. The eigenvalue is a strictly increasing function for m > 0. The e�ect

of density strati�cation is more subtle, since it does not appear explicitly in equations

(25a-f), but manifests itself through the calculation of the basic ow.

In the absence of a discontinuity in viscosity across the interface, the wavenumber of

the inviscid stationary mode is

2
0
= 2

00
= 1:4899:

Using the asymptotic methods for m�1� 1, we obtain the leading order correction

to 0 due to a small viscosity di�erence across the interface. The solvability condition
(28a) represents two simultaneous equations to determine unknowns �01 and �01 (taking
real and imaginary parts of (28a)). However, it is more useful to evaluate

01 =
�00�01 + �00�01

00
:

We �nd that

2
0

= 2
00
+ 2�0001 +O

�
�2
�
;

= 1:4899 + 0:1726� +O
�
�2
�
:

Figure 7 shows the value of 20 evaluated using the numerical scheme for m close to unity.
The broken line represents the calculation of 200 + 2 (m� 1) 0001 by the asymptotic
methods described above.

The eigenvectors illustrated in Figures 8(a) and 8(b) have been normalized so that

their maximum values are 1:0. Figure 8(a) shows V 10 and V 20 when the two uids are
identical. We notice that the maximum velocity perturbation is at Y = 0:0839. Figure
8(b) however, corresponds to the case m = 5. Although the velocity perturbation is still
continuous, a discontinuity in the �rst derivative at the unperturbed interface position

has developed due to the equation of tangential stress continuity. The maximum of V 10

now occurs much further away from the interface, at Y = 1:341.

The orientation of the disturbances relative to the streamwize axis is determined by

the wave angle � such that

�0

�0
=

�00

�00
+
�01�00 � �00�01

�200
�+O

�
�2
�
;

= 0:7514 + 37:88� +O
�
�2
�
;

= tan
�
�

2
� �

�
:
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For matched uid properties the e�ective wavenumber and wave angle given above cor-

respond to the single uid case. As viscosity strati�cation is introduced, we obtain the

above corrections to these quantities and these in turn are in agreement with our nu-

merical results for general viscosity and density ratios. These calculations are based

on an in�nite Reynolds number assumption. This work could be extended to include

viscous e�ects in an analogous manner to the method used by Hall [10] for the ow over

a rotating disk. Viscous e�ects enter at O
�
R�1=16
e

�
, the corresponding momentum equa-

tions must then be solved to determine Uj1; Vj1;Wj1; : : : ; and the solutions matched onto

the inviscid ow. The analysis is, however, made more di�cult due to the complicated

interfacial conditions which match the ow across the two regions.

5 Conclusions

In Sections 3 and 4 we have considered both two and three-dimensional disturbances to
the ow of air over water. The exact solution of the Navier-Stokes equations described
in Section 2, is a crude model of the ow near the leading edge of a swept wing during
heavy rainfall. We have shown that the interfacial forces have a signi�cant e�ect on

the stability of the attachment line ow. Viscous traveling waves are predicted at lower
Reynolds numbers than is the case for air ow in the absence of a second uid. The
instability is due to the discontinuity in the viscosity and density across the interface
between the two uid regions and occurs with either blowing or suction at the plate.

At in�nitely large Reynolds numbers, the interface also alters the neutral stability of

stationary modes of the form considered by Gregory et al. [9]. The three-dimensional
basic ow is written in terms of an `equivalent' two-dimensional velocity pro�le which has
an inection point when the velocity is zero. Consequently the critical layer is passive
and the ensuing calculations of the eigenvalues and eigenvectors for three-dimensional
disturbances follow in a straight forward manner. Using both general numerical methods
and asymptotic techniques for the ow of similar uids we have obtained the corrections

to the disturbance wavenumber and orientation due to interfacial e�ects.
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Figure captions

Figure 1(a). Basic ow of air over water: velocity pro�les with wall blowing and

water depth D = 0:5; 1:2; 3; 4.

Figure 1(b). Basic ow of air over water: velocity pro�les with wall suction and

water depth D = 0:5; 1:2; 3; 4..

Figure 2(a). Basic ow of air over water: water depth D and corresponding blow-

ing/suction �.

Figure 2(b). Basic ow of air over water: streamlines with wall blowing.

Figure 2(c). Basic ow of air over water: streamlines with wall suction.

Figure 3. Neutral curves with equal viscosities and densities: Impermeable plate
� = 0, blowing with � = 0:137 and � = 0:4, and suction with � = �0:1.

Figure 4(a). Neutral eigenfunctions U; V;W for a single uid, Re = 119, � = 0:4.

Figure 4(b). Real part of neutral eigenfunctions U; V;W for air ow over water,
Re = 1580, � = 0:04.

Figure 4(c). Imaginary part of neutral eigenfunctions U; V;W for air ow over water,
Re = 1580, � = 0:04.

Figure 5(a). Neutral curves: solid line corresponds to the ow of air over water with
increasing wall blowing; dotted line shows the neutral curve for a single
uid with no wall blowing.

Figure 5(b). Neutral curves: the stability of air ow over water with suction at the

wall.

Figure 6. Eigenvalues 0 as a function of viscosity ratio m.

Figure 7. Eigenvalue 0 for similar uids: a comparison of asymptotic and nu-

merical results when the viscosity ratio m is close to unity.

Figure 8(a). Eigenfunction: Equal densities and viscosities.

Figure 8(b). Eigenfunction: Equal densities, viscosity ratio m = 5:0.
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Tables

Density Viscosity Kinematic Viscosity

g cm�3 g cm�1s�1 cm2s�1

Air 1:225 � 10�3 1:776 � 10�4 1:450 � 10�1

Water 9:991 � 10�1 1:137 � 10�2 1:138 � 10�2

Water/Air 8:156 � 102 6:402 � 101 7:848 � 10�2

Table 1. Physical properties of air and water.

N k <fkcg �

10 3:300581 � 10�1 1:226919 � 10�1 0:0

20 3:378719 � 10�1 1:267951 � 10�1 0:0

40 3:384238 � 10�1 1:270776 � 10�1 0:0

80 3:384613 � 10�1 1:270965 � 10�1 0:0

160 3:384638 � 10�1 1:270977 � 10�1 0:0

10 8:540221 � 10�2 2:284554 � 10�2 0:4

20 8:428938 � 10�2 2:243776 � 10�2 0:4

40 8:415787 � 10�2 2:238444 � 10�2 0:4

80 8:414404 � 10�2 2:237832 � 10�2 0:4

160 8:414255 � 10�2 2:237762 � 10�2 0:4

320 8:414239 � 10�2 2:237753 � 10�2 0:4

Table 2. Neutral eigenvalues with decreasing step-size: m = 1, � = 1 and Re = 800.
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